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FUNCTIONS OF AN n-DIMENSIONAL 
BROWNIAN MOTION THAT ARE MARKOVIAN 

BY 

ALBERT T. WANG AND CHANG SHING CHEN 

ABSTRACT 

Let [ be a continuous function from R" to R and let X(t) = (Xl(t)," ", X, (t)) 
be a Brownian motion on R n. The explicit form of f necessary in order to make 
f(X(t)) a Markov process is determined. 

1. Introduction 

Let f be a cont inuous  funct ion f rom R n to R and X( t )  he a s tandard  

Brownian  mot ion  on R".  Then  what  is the explicit fo rm of f necessary in order  to 

make  f (X( t ) )  a Markov  process? W h e n  n = 1, the following elegant  result was 

obta ined  by Walsh [6]. 

PROPOSITION 1 (Walsh). Let f be a continuous function from R to R and X( t )  

be a one-dimensional Brownian motion. Let lo(x ) = O, ll(x ) = x, 12(x ) = Ix l and 

13(x) = inf{ I x - y I I y is an even integer}. Then f (X ( t ) )  is a Markov process if  and 
only if for some i, 0 <-_ i.<= 3, 

(1) f ( x )  = g o l , (ax +/3) ,  

where a and ~ are constants and g is continuous and strictly monotone. 

In this paper ,  we shall ex tend Walsh ' s  result to  the n-d imens iona l  Brownian  

motion.  O u r  main result is given in the following. 

]Vf~AIN TrmOREM. Let f be a continuous function from R "  to R and X (t )= 
(Xl(t), X 2 ( t ) , " . ,  X ,  (t)) be an n-dimensional Brownian motion. Then f (X( t ) )  is 

Markov if  and only if  either 

(2) f ( x ) = f ( X l ' X 2 " ' " x n ) = f (  ~a'Xi)i~l 

Received April 20, 1979 

343 



344 A . T .  W A N G  A N D  C. S. C H E N  Israel J. Math. 

o r  

where al, ci are constants, b~ equals 1 or 0 with at least two b~ ' s nonvanishing, and f 

and g are given in Proposition 1. 

In other words, in order to be a Markov process f (X( t ) )  needs to be either a 

function of a one-dimensional Brownian motion E?~ a,X~ (t) or a function of a 

Bessel process {E?~I b, (X~ ( t ) -  c,)2} 1'2. Assume that f (X( t ) )  = h (ET=~ a~X~ (t)). 

Then by Proposition 1, h must be equal to ~ where f is given by (1). 

The functions f satisfying (2) or (3) share a common geometric property: the 

level surfaces of f are parallel surfaces (for a rigorous definition of parallel 

surfaces see Nomizu [4]). To be more precise if f is of the form (2), the level 

surfaces of f are parallel hyperplanes; if f is of the form (3), then the level 

surfaces of f are the surfaces of a family of concentric spherical cylinders. In 

particular, when n = 3 the level surfaces of f can be parallel planes, surfaces of 

concentric balls, or surfaces of concentric cylinders. 

If f is given by (2) or (3), then f (X( t ) )  is clearly Markovian. Hence we only 

need to prove the other direction of our main theorem. From now on let f (X( t ) )  

be Markovian. In section 2 we shall obtain some geometric properties that f 

satisfies. One of the properties is: 

(4) f ( x )  = f(x ' )  implies d(x , f - l (c))  = d ( x l ,  f - - l (c))  

where {x, x'} C R", c ~ R, and d is the distance function. In other words, points 

of equal value in f are equidistant from any level set of f. This is very close to 

saying that the level surfaces of f are parallel. Since f is only continuous, in the 

beginning we do not know if the level sets are surfaces. Hence a transformation 

of f is needed. In section 3, we prove that f = u o h, where h is a function from 

R" to R such that it is harmonic in h-l(Interior h(R"))  and u is continuous and 

strictly monotone from h(R" )  to R. Since h = u - l o f  and u -1 is strictly 

monotone, h is also a Markovian function. Further, if one can prove that h is of 

the form given by either (2) or (3), then so is f. 

In our initial approach to this problem, we only used the smoothness of h and 

the fact that h satisfies (4) to prove our main theorem. However, the proof was 

fairly complicated. Later, we found that on h-l(I~ I ~  interior of h(R~),  h 

satisfies a system of partial differential euations: 

There exist Borel measurable functions 4~ and ~ such that 
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(5) ]gradh I (x)= ~b(h(x)) and Ah(x )=  tp(h(x)). 

Equation (5) was studied by E. Cartan, K. Nomizu and others. For an elegant 

treatment of (5) and some of the references see Nomizu [4]. Using the results in 

[4], it is easy to see that h(x l , . . . ,  x,) must be equal to either gl(YT~l a~x,) or 

g2('~',~=1 b,(x - c~) 2) for some gl and g2, where a,, b~ and c~ are given in the main 

theorem. Then it is not hard to determine g, und g2. 

A few more references related to our problem need to be mentioned. 

Rosenblatt [5] studied the Markovian functions f of a stationary Markov chain 

X.. Under the hypothesis that the transition probabilities of X, are dominated 

by a sigma finite measure, he obtained some necessary and sufficient conditions 

on f to make f (X,)  Markovian. For a stationary Markov process Z(t) Dynkin [2; 

p. 325] has a sufficient condition on f to make f(Z(t)) a Markov process. In both 

[5] and [2], their processes are defined on a general state space and the 

conditions they obtained are in terms of the transition functions. The explicit 

form of Markovian functions of a general Markov process are hard to find. When 

the process is a one-dimensional space-time Brownian motion or one- 

dimensional homogeneous diffusion, the explicit forms of Markovian functions 

are given by Wang [7] and [8] respectively. 

2. Some geometric properties of a Markovian function of Brownian motion 

Let (X(t), ~,, P,) be a standard Brownian motion and p (x, t, A ), x E R ", t => 0, 

A ~ ~J(R"), be its transition function. Let f be a continuous function from R"  

to R, Y(t) = f(X(t)), and (g, be the sigma field generated by {Y(u)] u <- t}. By 

calling Y(t) a Markov process, one usually means that {Y(t), ~g,, P,} is Marko- 

vian. Indeed {Y(t), ~g,,Px} is a Markov process if and only if {Y(t), ~,,Px} is 

Markovian (see Wang [8]). Hence there is no ambiguity when one simply says 

that Y(t) is a Markov process. The following class T of functions are exactly the 

continuous Markovian functions of Brownian motion: f E T if f is a continuous 

function from R"  to R such that 

(6) f(x)  = f(x') implies p(x, t,f- '(B)) = p(x', t,f-'(B)), B ~ ~(R) ,  t >= O. 

LEMMA 1. f(X(t))  is Markovian if and only if f E T. Further, if f ~ T then 
f(X(t)) is strong Markov with respect to both ~, and ~,. 

A proof of Lemma 1 can be found in [8] and hence is omitted. The idea of this 

lemma goes back to Rosenblatt [5] and Dynkin [2; theorem 10.13]. 

Let z ~ R"  and S(z, r) be the surface of the ball centered at z with radius r. 
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For r=>0, B ~ ~ ( R )  we define 

(7) G(z, r, f - l (B  )) = surface measure of S(z, r) N f - l (B  ). 

Assume f E T. We shall obtain: 

(8) f ( x ) = f ( x ' )  implies G(x,r , f -~(B))= G(x' ,r , f -~(B)) ,  B ~ ~ ( R ) ,  

for almost all r. 
Indeed, f satisfies (8) is equivalent to f E T. An important  consequence of (8) 

is (4). We shall prove these results in the following. 

LEMMA 2. Let v E L~oc([0, oo)) and let 

fo exp [ r2/(2t)] v (r)dr = 0 for all t > O. 

Then v(r) = 0 a.e. 

PROOF. Put u = l / ( 2 t ) ,  z = r  2 . W e g e t  

fo exp ( uz)da (z) = for u, 0 all I 

where d R ( z ) =  v(zlrZ)(4z)-~r2dz is a function of bounded variation on any 
compact subset of [0,oo). By Widder [9; p. 107 theorem 7.2], a ( z ) =  0 for all 
z E [0, oo). This implies v (r) = 0 a.e. 

LEMMA 3. f E T if and only if f satisfies (8). 

PROOF. 

p(z, t,f-~(B)) = (27rt) -"'2 fr_~<a ) e x p [ -  Iz - 12/(20]@ Y 

(27rt) -"/2 fo | exp [ - r2/(2t)] �9 G (z, r, f-~(B))dr. 

Hence for any two points {x, x'} C_ R", p(x, t, f-~(B )) = p(x' ,  t, f-~(B )) if and only 
if 

fo exp[ r2/(2t)] �9 [G(x, r, f -~ (B) ) -  G(x' ,  r, f - ~ ( B ) ) ] a r  = 0. 

Then  Lemma 3 follows easily from Lemma 2. 

COROLLARY 1. Let f E T and f(x) = f(x') .  Then d ( x , f - ~ ( B ) )  = a(x',/-l(n)) 
for any open subset B of R such that f-~(B ) ~ 0 .  
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PROOF. Let d(x,f-~(B))= do. Given any e > 0, there exists y E f-~(B) such 

that d(x, y) < do + e. Since [-I(B) is an open set, there is a 8 > 0 such that the 

ball centered at y with radius 8 is contained in [-'(B). Hence 

G(x,r,f-~(B))>O fora.a, r E J = [ d ( x , y ) - 8 ,  d(x,y)+6]. 

By Lemma 3 and the assumption that f (x)= f(x'), we have G(x', r,f-~(B))> 0 
for a.a. r E J. Hence d(x', f-~(B))< d(x, y ) <  do + e. Then Corollary 1 follows 

easily. 

COROLLARY 2. Let f be a nonconstant function in T. Then f-~(a ) does not have 
an interior point for any a E R. 

PROOF. Assume for some a, f-~(a) has an interior point x. Since f is a 

nonconstant continuous function, f-~(a) has a boundary point x ' E  f-~(a). Let 

B = R - { a }  in Corollary 1, one gets 

d (x, f - l (B) )  = d (x', f-~(B)) = 0. 

This contradicts our assumption that x is an interior point of f-~(a). 
Similarly, one can also show that for a nonconstant function f E T, f-~(a) does 

not contain a density point for any a E R. 

COROLLARY 3. If f ~ T, then f satisfies (4). 

PROOF. If f-l(a)= O, then (4) is clearly true. Assume ]'-1(a)~0. Then 

Corollary 3 follows from Corollary 2, because 

d(x,f-1(a)) = lim d(x,f-l(a - e, a + e)). 
e--.O 

REMARK 1. IS the converse of Corollary 3 true? The answer is negative Let 

C~, s => 0, be a collection of subsets of R2 such that 

Co = {(x, y)[ x E [ -  1, 11, y = 0}, 

= {(x, y) l  d((x,  y), Co) = s}. 

Define u(x, y) = s for (x, y) E C,. Clearly, u satisfies (4). But u is not of the form 

given in the main theorem. 

REMARK 2. The results we found in this section are also true when f is a 

function from R "  to R " ,  m > 1. 

3. If one allows [ to be a continuous function from R"  to [ - 0% oo], 



348 A.T. WANG AND C. S. CHEN Israel J. Math. 

all results in this section still hold, presuming one also modifies the definition of 

T accordingly. 

3. Some analytic properties of Markovian functions of Brownian motion 

Let f E T and let Y(t) = f(X(t)).  Then Y(t) is a pathwise continuous process. 

For y = f(x), we use Qy to denote the Px-distribution of Y(t). By the definition 

of T, Qr is well defined. Put 

a = inf{f(x)lx E R"}, b = sup{f(x) lx  E R"}. 

We shall assume a <b ,  i.e. f is a nonconstant function. By Lemma 1, 

{Y(t), ~,, Qy} is a diffusion taking values from [a, hi. We discuss the regularity of 

{Qy} in the following. 

Let {y, z}_C (a, b). Without loss of generality we can assume y < z. Then 

Q,(Y( t )  hits z)>= Qy(Y(t)  hits (z, b)) 

= P~ (X(t) hits f-l(z, b)) 

>0 ,  where f ( x )=  y. 

If both a and b are not taken by f, we have already shown that {Qy} is a regular 

diffusion on (a, b). If one or both of {a, b} are taken by f, then more discussions 

are needed. Assume a is taken by f and y E (a, b). Then 

Qy (Y(t)  hits a) = P~ (X(t) hits f-l(a)) for some x such that f (x)  = y. 

Clearly, P~ (X(t) hits [-l(ti)) > 0 if [ - l (a )  is not a polar set. On the other hand if 

f - l (a )  is a polar set, then we can ignore it and treat the process {f(X(t)), ~ ,  P~} 
(or equivalently the process {Y(t), ~,, Qy}) as a process taking values from (a, b] 

or (a, b). 

From now on we shall assume that {Y(t), o~, Px} is a regular diffusion on an 

interval /, where I can be (a, b), (a, b], [a, b), or [a, b]. Let $ be the scale 

function of {Oy}, y ~ L Then {S(Y(t)), ~ ,  Oy} is a regular diffusion of natural 

scale on $(1). Define 

~- = inf{t I Y(t) = a or b} = inf{t IX(t)  ~ f-l(a) U f-l(b)}. 

Then it is well known that for each fixed y E I  ~ the interior of /, 

{S(Y(t  ^ ~)), ~,^,, Oy} is a fair process and hence a local martingale. Equival- 

ently, {So]:(X(t)), ~:,^,,Px} is a local martingale for each x E f-I(I~ Put 

D = ]:-1(I~ By the continuity of ]', D = t..J~'=l Oj where Oj are disjoint con- 

nected open sets. 
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LEMMA 4. Let h = S of. Then h is harmonic on each component of D. 

PROOF. Since (h (X( t  ^ ~')), ~,^~, Px) is a local martingale for each x E D, it 

follows easily that h is harmonic for Brownian motion on each O,. For the 

definition of harmonic functions for a process, we refer the reader to Dynkin [5; 

12.11]. Applying theorem 12.11 of Dynkin [5], one obtains that h is harmonic on 

each O, 

The scale function S is strictly monotone on I, (a, b) C_ I _C f (R" ) .  If no polar 

set has been ignored in obtaining the regularity of f (X( t ) ) ,  then I = f (R") .  

Otherwise, I ~  f (R") .  Since S is monotone o n / ,  one can extend it continuously 

to [a, b]. Then h = S of is defined on R". Note that h may be infinite on a polar 

set. Because S is strictly monotone and f E T, h satisfies (6). By Remark 3, the 

results given in section 2 hold true for function h. 

Before we prove that h satisfies (5) on D, we state a result given by Dynkin [2, 

theorem 10.13]. 

PROPOSITION 3. Let u E T and g be a function from R"  to R which is 

measurable with respect to u. Let T,g ( x ) = E x (g ( X ( t ) ) ) be finite for all x. Then T,g 

is also measurable with respect to u. 

To prove Proposition 3, one needs to show that u(x)  = u(x')  implies T,g(x) = 

T,g(x'). This follows easily from the fact that u satisfies (6), g ( x ) =  v (u(x ) )  a.e. 

for some Borel measurable v (see Chung [1, p. 299]), and 

T,g(x) = fR. g(x)p(x,  t, dr).  

LEMMA 5. Let h = S of be given as in Lemma 4. Then h satisfies (5) on D. 

PROOF. Since h is harmonic on each component of D, Ah = 0 on D. Define 

~b(x)-- 0, then Ah = q~ oh on D. Now let u(x)  = tan-I x, v(x)  = u oh(x).  Since u 

is strictly monotone and h satisfies (6), v satisfies (6). That is, v E T. By using 

Proposition 3 and the properties of the generator of Brownian motion, it is not 

hard to show that Av is measurable with respect to v and hence Av is also 

measurable with respect to h. Now for x E D, 

A v (x) = u'(h (x))Ah (x) + u"(h (x)) I grad h (x)l 2 

= u"(h (x))lgrad h (x)l 2 

= w(h(x) )  

for a Borel measurable function w defined on the reals. Evidently, for 
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x ~ D - B ,  Igradh(x)lZ=dp(h(x)) where ~(y)=w(y)/u"(y) ,  and B =  

{x I u"(h(x)) = 0}. The exceptional set B is easy to eliminate. One of the ways to 

eliminate it is by defining u~(x) = tan-l(x + 1), v~(x) = u~oh(x) and repeating 

our previous arguments again. 

REMARK 4. Let u be a C 2 function in T. Then by using arguments similar to 

that given in Lemma 5, one can prove that u satisfies (5). But there exist C 2 

functions which satisfy (5) and are not in T. Let g be a C 2 function from [0, 00) to 

R such that g is strictly decreasing in [0, 1] and g ( y ) =  0 for all y => 1. Put 

l(x~, x2, . . . ,  x , ) =  g(E?=l x~), then l satisfies (5). However,  since g is not strictly 

monotone,  l is not of the form given in the main theorem. Thus l(X(t)) is not 

Markovian. 

4. Proof of the main theorem 

Let u be a real valued C 2 function defined on R". Let u satisfy (5). The 

following results are known (see Nomizu [4]). 

(1) Put M, = {x I u(x) = s}. Assume that grad u(x )~  0 on a certain M,  then 

Ms has constant principal curvatures. 

(2) In R"  there are exactly n kinds of hypersurfaces of constant curvatures. 

They are the level surfaces of w(xl , . . . , x , )  = Ek,~ix~, 1 <= k <= n. 
The arguments given in Nomizu [4] are local arguments and can be applied 

also to the function h given in Lemma 5. By abusing our notation slightly, we 

shall use M, to denote  {x I h(x) = s}. 
Let Xo E D, h (Xo) = s, and grad h (Xo) ~ 0. Then the component  of Ms which 

passes through Xo is a hypersurface of constant curvature. By the smoothness of 

h, we know there is an open neighborhood N of xo such that grad h (x) ~ 0 for all 

x ~ N. Hence for each x E N, the level surface of h which passes through x is 

also of constant curvature. It is easy to see that the level surfaces of h passing 

through x, x E N, are parallel. We can expand this family of parallel surfaces 

until we need to cross a point x such that x ~ D or g r a d h ( x ) =  0. 

Put B1 = {x E D I grad h (x) = 0}, B2 = B1U D c. Since D ~ C f-~(a) U [-~(b) 
(recall h = S of, . rE T) and a < b, by Corollary 2 we know D ~ does not have an 

interior point. We claim B~ does not contain an interior point either. Otherwise, 

h-~(c) would have an interior point for some c, a contradiction to Remark 3 and 

Corollary 2. Since B1 C_ D and D is an open set, one obtains that B2 = B~ t.J D"  

does not have an interior point. Now by using Corollary 3 and Remark 3, one 

sees that the parallel family of level surfaces of h obtained in the last paragraph 

can cross B2 and be expanded to cover R". 
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Since f = S -1 o h and S -1 is a strictly monotone function, the level surfaces of f 

are parallel and are of constant curvature. One can find two Borel measurable 

functions ga and g2 such that 

f ( X l ,  X2, ~176 ", Xn)  = g l  a,x, , o r  

(9) = g2 (i__~ 1 bi(x,_c,)2), 

where at, b~, c, are given in the main theorem. 

Let f(xa, x2 , . . . , x , )= g~(E?~la,x,). Since E~a~X~(t) is a one-dimensional 

Brownian motion and f(X(t))  is Markovian, by Proposition 1 we know gl = 

We shall prove that the function g2 in (9) is strictly monotone.  

LE~n~iA 6. Let f ~ T, f ~  Const. Suppose that 

f(x~, " ",xn)= g ( ~,~ b,(x, - c,)2) , 

where b~, c~ are given in the main theorem, then g is strictly monotone. 

PROOF. We shall only prove the case when f(xa,. . . ,  xn) = g ( E ~  x~), where 

k = 2, 3 , . .  n. The general case can be treated similarly. For the special case we 

are going to deal with, we can treat f as a function defined on R k. 

Assume g (0 )=  a. First, we'll show that g(r)~ a for all r #  0. Assume this is 

not true so there exists at least one ro ~ 0 such that g(ro) = a. From the properties 

of f and g and Corollary 2, we know g is not a constant function on [0, ro]. Let M 

and m be the maximal value and the minimal value of g on [0, ro] respectively. 

Evidently, a is properly contained in [m, M].  Assume a # M. Define 

r~ = inf{r I g(r)  = M}, 

r2 = sup{r I r < rl, g(r) = (a + M)/2}. 

Now let x=(x~, . . . , xk)  be a point in R k such that Ek,_lx~=ro and let 

B = ((a + M)/2, M). Clearly, f (x )= f(0); here 0 denotes the origin of R k. By 

Lemma 3 G(x, r,f-a(B)) = G(O, r,f-~(B)) for almost all r. By the definition of rl 

and r2, it is easy to see that G(0, r,f-~(B)) = C(k, r) for r~ < r < r2, where C(k, r) 
denotes the surface measure of a k-dimensional ball with radius r. Since g is 

continuous and g(ro) = a, there exists an e > 0 such that g(r) < (a + M)/2 for all 

rE[ro-e ,  ro+e]. Then by simple geometry, it is not hard to see that 

G (x, r, f-~(B)) < C(k, r) for all r in [r~, r2]. Hence f(x)  ~ a. If a = M then a ~ m. 

We can proceed similarly and obtain f ( x ) ~  a. 
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Since [ cannot take value a at any other point in R", the origin is either the 

only global maximum of [ or the only global minimum of [. Assume g is not 

strictly monotone. Then there exist {r3, r4}, r3~ r4, such that g(r3)= g(r4). Let y 
and z be two points in R ~ of distance r3 and r4 from the origin respectively. Then 

[ (y)  = f(z), but d(y, f - l (a) )  ~ d(z,[-l(a)), a contradiction to Corollary 3. Hence 

g must be strictly monotone. 
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